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Abstract

We show that a model, recently introduced for quantum nondemolition measurements

of a quantum observable, can be adapted to obtain a measurement scheme which is able to

slow down the destruction of macroscopic coherence due to the measurement apparatus.

1 Introduction

One of the most important limitations in the observation of quantum coherence at macroscopic

level is the possibility of generating at least to macroscopic quantum states which show the quan-

tum coheh rence. Since the seminal work of Yurke and Stoler [1] it becomes clear that a Kerr

medium could be used to generate such states at optical level. They showed, indeed, that the

unitary evolution of an initial coherent state, interacting with a Kerr medium with a well defined

length, will produce a superposition of coherent states. For instance an initial states [c_/ will

generate the superposition

after an interaction time to = _-/(2f_) where t2 is the strenght of Kerr nonlinearity. At well defined

shorter times three or more coherent states could also be generated [1]. This, of course, requires

the precise knowledge of the length of the medium (or interaction time). It is also well known.

and was shown in great details by Daniel and Milburn [2], that as soon as one takes into account

the loss in the Kerr medium the generation of those states is suddenly inhibited. Thus, the best

should be to have a Kerr medium with high nonlinearity to loss ratio. Recently [3], quadrature

squeezed light was obser_d in semiconductors at frequencies less than half of band gap, where

large ratios of nonlinearity to loss can be obtained [4]. Then, semiconductors could be the best

media to generate the superposition of states because of the large ratio of the nonlinear ph_e

shift to the optical losses which in the reported experiment [3] was extimated geater than 100.

Furthermore, it has been recently shown [5] that a quasi-superposition of macroscopic states, with

interference fringes st;ill present, could be generated in a Kerr medium with the above ratio of 10,
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when one uses a squeezed bath to model the loss. In this context it was also shown that a squeezed

bath could be realized by a suitable feedback [6]. Moreover, it was also shown [7] that by using

a time modulation of the Kerr nonlinearity one could obtain the coherent superposition without

the precise knowledge of the length of the medium (or interaction time) by only adjusting the

phase of the time modulation. However, even though we could assume that such a macroscopic

superposition (or quasi-superposition) has been generated, one should have some experimental

apparatus suitable to observe the interference pattern. Yurke and Stoler [1] pointed out that

any unavoidable dissipation, introduced by the measurement process, will suddenly destroy the

interference fringes which are the signature of the coherent superposition. Kennedy and Walls [8],

following a suggestion of Mecozzi and Tombesi [9], showed that a phase-sensitive experimental

apparatus, like the one modeled by a squeezed bath, might preserve the macroscopic coherence.

In the present paper we will show that such an experimental device could be phisically realized by

using an appropriate quantum nondemolition (QND) model, introduced by Alsing, Milburn and

Walls [10], when one takes into account the detunings of the coupled modes with respect to the

cavity characteristic frequencies.
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2 The Model

We consider a cavity supporting two different modes, with annihilation operators a and b. The

two modes are coupled by a nonlinear crystal, so that (in the interaction picture)

H,,,t = hxX¢Y_ , (2)

where X¢ = (ae '¢ + ate -'¢)/2 and Y_ -- (be '_ + bte -'_)/2. This interaction could be achieved

by, for example, a crystal with a X (2) nonlinearity in which two processes driven by classical

fields, amplification at the frequency ws = w, + cab, and frequency conversion at the frequency

w_ = w, - wb, have equal strengths [10]. Because of the QND condition, when the "meter" mode

b is heavily damped at rate kb, one can monitor the quadrature X¢ of the signal mode a just by

performing a homodyne measurement of a quadrature Y6 of the mode b. In fact, when kb :>> /ca

(damping rate of the a mode) the homodyne photocurrent I(t) can be directly expressed in terms

of the "instantaneous" mean value (Xe(t))c, conditioned on the result of the measurement [11, 12],
as

I(t) = _X [2sin(5 - _) (X_(t))c + _/2-_2_(t)] , (3)

where rI is the efficiency of the homodyne detection and _(t) is a Gaussian white noise with

(_(t)_(t')) = 5(t - t').

The QND-mediated feedback model of [6, 11] is obtained by taking part of the output homo-

dyne photocurrent I(t) and feeding it back to the cavity so to add a driving term H/b(t) = ttgI(t)Xo

to the a mode Hamiltonian. The constant g represents the gain of the feedback process and

Xo = (ae _ + ate -_°)/2. If one adiabatically eliminates the meter mode b and applies the Marko-

vian feedback theory recently developed by Wiseman and Milburn [13], the dynamics of the a
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mode can be exactly determined, and in [11] we have shown that in the unstable regime the

decoherence time of an optical SchrSdinger cat can be appreciably increased, so to facilitate its

detection.

In the present paper we reconsider this model and we eliminate the electro-optical feedback

loop. We simply detune the two modes in the cavity, so that their uncoupled evolution is no more

driven by the standard vacuum bath term alone, but by

£_p = k_ (2apa t- atap- pata) - i [6_ata,p] (4)

and an analogous expression holds for the b mode. The effect of the two nonzero detunings 5a

and 6b can be intuitively described in terms of an "internal feedback" mechanism, because the

detunings mix the two quadratures X_ and Y_ with their respective 7r/2 out of phase quadrature,

so that any variation of X¢ is "fed back" to the X_ dynamics itself by the joint action of the

detunings and the nonlinear coupling. Provided that the adiabatic condition kb >> ka is satisfied,

the homodyne measurement of the quadrature Y6 allows monitoring the a mode quadrature X_

also in the presence of nonzero detunings. In fact, when 6b -_ 0, Eq. (3) generalizes to

I(t) = fix [k_ + 6_ sin(6- _o)

2kb6b cos(6- (x¢(t)L +
+ q J

(5)

so that from the homodyne photocurrent it is still possible to reconstruct the marginal probability

distribution of the quadrature X_, which is the quantity usually considered for revealing the

interference fringes associated to an optical SchrSdinger cat. We have therefore the model defined

by the following master equation for the density matrix D of the two modes

i [Him, D] ,
D = £aD + £bD -- -_

where the superoperator /:i (i = a, b) is given by (4). We shall now see that all the interesting

results obtained for the feedback model of [11] (the preservation of macroscopic quantum coherence

in particular) can also be obtained with this simpler model.

Eq. (6) can be exactly solved, because the Wigner function of the two modes evolves according

to the Fokker-Planck equation for a four-dimensional Ornstein-Uhlenbeck process [14]. Anyway,

the analytical expressions in the general case are very cumbersome and therefore we shall ex-

plicitely discuss only the adiabatic limit kb >> k_, where the meter mode b can be adiabatically

eliminated, and which, as we have seen above, is the most interesting case for our purposes. After

the adiabatic elimination of the b mode, one gets the following master equation for the a mode

reduced density matrix p

F

i,= &p- [x¢,[X¢,p]]+ iY[X¢, {X¢,p}] (7)

where C = x2kb/2(k_, + 6_), F = X26b/4(k_ + 5_).
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3 Macroscopic Coherence

We will now focus on the detection of optical SchrSdinger cats rather than on their generation, and

therefore we shall assume that at t = 0 a superposition of coherent states of the a mode has been

already prepared, i.e., we consider an initial condition p(0) = Ea,0 No,,#l a) (/3[. The exact time evo-

lution from this initial state can be obtained with the same method of [11] and it is better expressed

in terms of the normally ordered characteristic function X( A, A*; t ) = Tr {p(t ) exp(Aat) exp(- A*a) }

X(A, A*; t)= Y_ N_,#(/31a)exp{B*(t)A- A(t)A*
a,13

-v(t)[_[2 +--T + _2 ,

(8)

where

A(t) 2 2A - iF + 2i5. _. iFe -2_'"= 25 - # -£-£

[22A+iF-2i6._.iFe -2'e+ 2A + # -(A

e--(k.+A)t

e--(k.--A)t (9)

B*(t) __* 2A + iF - 2i6. iFe 2i_"

+ [_ *2A-iF+2i6aiFe2ie2A - o_

e--( k. + A )t

e--(ko--A)t (I0)

v(t)----F ( F5"/%2 _)( 1 - e-2(k"+A)t'_2(_ T_-)) ]

r_o(2_. - F) { 1 - e-_k't_

+]-g \ A2 + 2(ko- ,',) j

(11)

F 2e- 2i_ (F6.
#(t) = 16(26.- F + 2iA) \A 2

FFe-2i_6_ 1 - e -2k_t

8A2 2k.

_) 1 - e -2(k'_+A)t2(k. +_x)

16 (26_ -- F- 2iA) \A2 + 2 (ka - A)

(12)

(13)
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We see that the system is stable and reaches a steady state if and only if

A <ka i.e. X25,_6b<4(k 2+6_)(k_+6_) . (14)

In the stable case, the stationary state is described by a Gaussian density operator of the form

{ mP,t=Z -lexp -nata--- t2 a 2 (15)
2 a 2 '

where Z is a normalization constant and the equilibrium parameters m and n can be written as

u¢¢ + 1/2
n = (16)

q(uoo + 1/2) 2 -I_ool _

x l°g { [_1(u_ +1/2)2 - l_0012+1/212 }uoo(uoo+ T) -I_::l _

#o¢ (17)m-- n,
uo¢ + 1/2

where the asymptotic values uo_ and #= are easily obtained from (11) and (12). An interesting

aspect of this stationary state is that it can show arbitrary quadrature squeezing. For example,

the stationary varianee of the quadrature Xe is given by

( = 8ko - j (is)

and one has squeezing when 6_Sb < 0 and kb/k_ < [6b/5,[. It is easily seen that when 6_ = 0

no squeezing is possible, while for 6_ _ 0 but 6b = 0 extra noise is added to the system. The

possibility to obtain squeezing with this model is thus only due to the existence of detunings,

which give a sort of implicit feedback.

4 Interference Fringes

Let us now focus on the detection of the interference fringes associated to a linear superposition

of coherent states. These fringes can generally be seen from the marginal probability distribution

of the quadrature X_, P(x_) = (x_lp(t)lx_), where ]x_) is the eigenstate of X t with eigenvalue

x¢. As we have seen above, this probability distribution can be reconstructed from the homodyne

measurement of the meter mode b and its general expression can be easily obtained from the

characteristic function (8) [8, 11]

P(x¢,t) _-'N (/_1_) e 6_'_(t))2
= 2-" <"_ /=7777 xp { (z_ - }

(19)
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where

1

,_(t)= _ + _,(t)+ P_{.(t)__'_} (2o)

5_,_(t) = A(t)e_" + B*(t)e-_" (21)
2

As a special case we consider the initial superposition trated by Yurke and Stoler [1], produced
by the unitary evolution of a coherent state in a Kerr medium

p(o)

2

(22)

With this choice (19) simplifies to

1 2 x
P(x_,t) = -_ {p2(x_,t) + p_( _,t)

+2p+(x_,t)p_(xe, t) sin [f_(xe, t)] I(_1- _)1'_(°} • (23)

The first two terms p_(x_, t) describe the two Ganssian peaks corresponding to the two coherent

states I + a) of the initial superposition and they are explicitely given by

where

p_,(xe,t)-- _expl { (x_ :{:5++(0) 2}a2(t ) , (24)

_++(t) = _{_¢_r(t)} (25)

r(t) = e-k°t(coshAt-i_sinhAt). (26)

The third term in (23) describes the quantum interference between the two coherent states, where
the function

2xe Im {ae_'r(t)} (27)_(x_,t)- _)

gives the probability oscillations associated with the interference fringes and the factor ](a I -

a) ]_(t) = exp {-21aI_r](t)} describes the suppression of quantum coherence due to dissipation. It is

clear that this suppression is practically immediate for macroscopically distinguishable states (i.e.,

large lal), unless z](t) __ 0. It is therefore important to analyze the behavior of this decoherence

function r](t), which is equal to

n(t) = 1 Ir(t)l_
2a_(t) " (28)

To be more specific, if we want to determine the conditions under which the detection of macro-

scopic quantum coherence is facilitated, we have to compare r](t) with the corresponding decoher-

ence function of a standard vacuum bath, which is given by [8]

r]vo_(t) = 1 - e -2k"t . (29)
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This function showsthat in the standard case,after a time t -_ 1/(2ka), it is r]wc(t) -_ 1 and

therefore the quantum interference is quickly washed out. On the contrary, in the present model

it is possible that rl(t) assumes much smaller values, so to significantly slow down the destruction

of the interference pattern.

5 Conclusions

Differently from a very large part of the literature on optical SchrSdinger cats, we have focused

on their detection rather than their generation because, as realized since the paper by Yurke and

Stoler [1], to detect a linear superposition of macroscopically distinguishable states is more difficult

than to create it. To the best of our knowledge, only the paper by Brune et al. [15] affords a

detailed discussion of both aspects, our opinion, Brune large number of atoms reconstruction of

the probability distribution revealing the contrary shows how to prepare a fully optical detection

scheme based on a very simple model, offer a promising way to both measurements and detect a

linear superposition of coherent states.
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